Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
<=2(0, y) -> true
<=2(s1(x), 0) -> false
<=2(s1(x), s1(y)) -> <=2(x, y)
if3(true, x, y) -> x
if3(false, x, y) -> y
perfectp1(0) -> false
perfectp1(s1(x)) -> f4(x, s1(0), s1(x), s1(x))
f4(0, y, 0, u) -> true
f4(0, y, s1(z), u) -> false
f4(s1(x), 0, z, u) -> f4(x, u, -2(z, s1(x)), u)
f4(s1(x), s1(y), z, u) -> if3(<=2(x, y), f4(s1(x), -2(y, x), z, u), f4(x, u, z, u))
Q is empty.
↳ QTRS
↳ Non-Overlap Check
Q restricted rewrite system:
The TRS R consists of the following rules:
-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
<=2(0, y) -> true
<=2(s1(x), 0) -> false
<=2(s1(x), s1(y)) -> <=2(x, y)
if3(true, x, y) -> x
if3(false, x, y) -> y
perfectp1(0) -> false
perfectp1(s1(x)) -> f4(x, s1(0), s1(x), s1(x))
f4(0, y, 0, u) -> true
f4(0, y, s1(z), u) -> false
f4(s1(x), 0, z, u) -> f4(x, u, -2(z, s1(x)), u)
f4(s1(x), s1(y), z, u) -> if3(<=2(x, y), f4(s1(x), -2(y, x), z, u), f4(x, u, z, u))
Q is empty.
The TRS is non-overlapping. Hence, we can switch to innermost.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
<=2(0, y) -> true
<=2(s1(x), 0) -> false
<=2(s1(x), s1(y)) -> <=2(x, y)
if3(true, x, y) -> x
if3(false, x, y) -> y
perfectp1(0) -> false
perfectp1(s1(x)) -> f4(x, s1(0), s1(x), s1(x))
f4(0, y, 0, u) -> true
f4(0, y, s1(z), u) -> false
f4(s1(x), 0, z, u) -> f4(x, u, -2(z, s1(x)), u)
f4(s1(x), s1(y), z, u) -> if3(<=2(x, y), f4(s1(x), -2(y, x), z, u), f4(x, u, z, u))
The set Q consists of the following terms:
-2(x0, 0)
-2(s1(x0), s1(x1))
<=2(0, x0)
<=2(s1(x0), 0)
<=2(s1(x0), s1(x1))
if3(true, x0, x1)
if3(false, x0, x1)
perfectp1(0)
perfectp1(s1(x0))
f4(0, x0, 0, x1)
f4(0, x0, s1(x1), x2)
f4(s1(x0), 0, x1, x2)
f4(s1(x0), s1(x1), x2, x3)
Q DP problem:
The TRS P consists of the following rules:
F4(s1(x), s1(y), z, u) -> F4(s1(x), -2(y, x), z, u)
F4(s1(x), s1(y), z, u) -> F4(x, u, z, u)
F4(s1(x), 0, z, u) -> F4(x, u, -2(z, s1(x)), u)
-12(s1(x), s1(y)) -> -12(x, y)
PERFECTP1(s1(x)) -> F4(x, s1(0), s1(x), s1(x))
<=12(s1(x), s1(y)) -> <=12(x, y)
F4(s1(x), 0, z, u) -> -12(z, s1(x))
F4(s1(x), s1(y), z, u) -> <=12(x, y)
F4(s1(x), s1(y), z, u) -> -12(y, x)
F4(s1(x), s1(y), z, u) -> IF3(<=2(x, y), f4(s1(x), -2(y, x), z, u), f4(x, u, z, u))
The TRS R consists of the following rules:
-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
<=2(0, y) -> true
<=2(s1(x), 0) -> false
<=2(s1(x), s1(y)) -> <=2(x, y)
if3(true, x, y) -> x
if3(false, x, y) -> y
perfectp1(0) -> false
perfectp1(s1(x)) -> f4(x, s1(0), s1(x), s1(x))
f4(0, y, 0, u) -> true
f4(0, y, s1(z), u) -> false
f4(s1(x), 0, z, u) -> f4(x, u, -2(z, s1(x)), u)
f4(s1(x), s1(y), z, u) -> if3(<=2(x, y), f4(s1(x), -2(y, x), z, u), f4(x, u, z, u))
The set Q consists of the following terms:
-2(x0, 0)
-2(s1(x0), s1(x1))
<=2(0, x0)
<=2(s1(x0), 0)
<=2(s1(x0), s1(x1))
if3(true, x0, x1)
if3(false, x0, x1)
perfectp1(0)
perfectp1(s1(x0))
f4(0, x0, 0, x1)
f4(0, x0, s1(x1), x2)
f4(s1(x0), 0, x1, x2)
f4(s1(x0), s1(x1), x2, x3)
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
F4(s1(x), s1(y), z, u) -> F4(s1(x), -2(y, x), z, u)
F4(s1(x), s1(y), z, u) -> F4(x, u, z, u)
F4(s1(x), 0, z, u) -> F4(x, u, -2(z, s1(x)), u)
-12(s1(x), s1(y)) -> -12(x, y)
PERFECTP1(s1(x)) -> F4(x, s1(0), s1(x), s1(x))
<=12(s1(x), s1(y)) -> <=12(x, y)
F4(s1(x), 0, z, u) -> -12(z, s1(x))
F4(s1(x), s1(y), z, u) -> <=12(x, y)
F4(s1(x), s1(y), z, u) -> -12(y, x)
F4(s1(x), s1(y), z, u) -> IF3(<=2(x, y), f4(s1(x), -2(y, x), z, u), f4(x, u, z, u))
The TRS R consists of the following rules:
-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
<=2(0, y) -> true
<=2(s1(x), 0) -> false
<=2(s1(x), s1(y)) -> <=2(x, y)
if3(true, x, y) -> x
if3(false, x, y) -> y
perfectp1(0) -> false
perfectp1(s1(x)) -> f4(x, s1(0), s1(x), s1(x))
f4(0, y, 0, u) -> true
f4(0, y, s1(z), u) -> false
f4(s1(x), 0, z, u) -> f4(x, u, -2(z, s1(x)), u)
f4(s1(x), s1(y), z, u) -> if3(<=2(x, y), f4(s1(x), -2(y, x), z, u), f4(x, u, z, u))
The set Q consists of the following terms:
-2(x0, 0)
-2(s1(x0), s1(x1))
<=2(0, x0)
<=2(s1(x0), 0)
<=2(s1(x0), s1(x1))
if3(true, x0, x1)
if3(false, x0, x1)
perfectp1(0)
perfectp1(s1(x0))
f4(0, x0, 0, x1)
f4(0, x0, s1(x1), x2)
f4(s1(x0), 0, x1, x2)
f4(s1(x0), s1(x1), x2, x3)
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 3 SCCs with 5 less nodes.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
<=12(s1(x), s1(y)) -> <=12(x, y)
The TRS R consists of the following rules:
-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
<=2(0, y) -> true
<=2(s1(x), 0) -> false
<=2(s1(x), s1(y)) -> <=2(x, y)
if3(true, x, y) -> x
if3(false, x, y) -> y
perfectp1(0) -> false
perfectp1(s1(x)) -> f4(x, s1(0), s1(x), s1(x))
f4(0, y, 0, u) -> true
f4(0, y, s1(z), u) -> false
f4(s1(x), 0, z, u) -> f4(x, u, -2(z, s1(x)), u)
f4(s1(x), s1(y), z, u) -> if3(<=2(x, y), f4(s1(x), -2(y, x), z, u), f4(x, u, z, u))
The set Q consists of the following terms:
-2(x0, 0)
-2(s1(x0), s1(x1))
<=2(0, x0)
<=2(s1(x0), 0)
<=2(s1(x0), s1(x1))
if3(true, x0, x1)
if3(false, x0, x1)
perfectp1(0)
perfectp1(s1(x0))
f4(0, x0, 0, x1)
f4(0, x0, s1(x1), x2)
f4(s1(x0), 0, x1, x2)
f4(s1(x0), s1(x1), x2, x3)
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
<=12(s1(x), s1(y)) -> <=12(x, y)
Used argument filtering: <=12(x1, x2) = x2
s1(x1) = s1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
<=2(0, y) -> true
<=2(s1(x), 0) -> false
<=2(s1(x), s1(y)) -> <=2(x, y)
if3(true, x, y) -> x
if3(false, x, y) -> y
perfectp1(0) -> false
perfectp1(s1(x)) -> f4(x, s1(0), s1(x), s1(x))
f4(0, y, 0, u) -> true
f4(0, y, s1(z), u) -> false
f4(s1(x), 0, z, u) -> f4(x, u, -2(z, s1(x)), u)
f4(s1(x), s1(y), z, u) -> if3(<=2(x, y), f4(s1(x), -2(y, x), z, u), f4(x, u, z, u))
The set Q consists of the following terms:
-2(x0, 0)
-2(s1(x0), s1(x1))
<=2(0, x0)
<=2(s1(x0), 0)
<=2(s1(x0), s1(x1))
if3(true, x0, x1)
if3(false, x0, x1)
perfectp1(0)
perfectp1(s1(x0))
f4(0, x0, 0, x1)
f4(0, x0, s1(x1), x2)
f4(s1(x0), 0, x1, x2)
f4(s1(x0), s1(x1), x2, x3)
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
-12(s1(x), s1(y)) -> -12(x, y)
The TRS R consists of the following rules:
-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
<=2(0, y) -> true
<=2(s1(x), 0) -> false
<=2(s1(x), s1(y)) -> <=2(x, y)
if3(true, x, y) -> x
if3(false, x, y) -> y
perfectp1(0) -> false
perfectp1(s1(x)) -> f4(x, s1(0), s1(x), s1(x))
f4(0, y, 0, u) -> true
f4(0, y, s1(z), u) -> false
f4(s1(x), 0, z, u) -> f4(x, u, -2(z, s1(x)), u)
f4(s1(x), s1(y), z, u) -> if3(<=2(x, y), f4(s1(x), -2(y, x), z, u), f4(x, u, z, u))
The set Q consists of the following terms:
-2(x0, 0)
-2(s1(x0), s1(x1))
<=2(0, x0)
<=2(s1(x0), 0)
<=2(s1(x0), s1(x1))
if3(true, x0, x1)
if3(false, x0, x1)
perfectp1(0)
perfectp1(s1(x0))
f4(0, x0, 0, x1)
f4(0, x0, s1(x1), x2)
f4(s1(x0), 0, x1, x2)
f4(s1(x0), s1(x1), x2, x3)
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
-12(s1(x), s1(y)) -> -12(x, y)
Used argument filtering: -12(x1, x2) = x2
s1(x1) = s1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
<=2(0, y) -> true
<=2(s1(x), 0) -> false
<=2(s1(x), s1(y)) -> <=2(x, y)
if3(true, x, y) -> x
if3(false, x, y) -> y
perfectp1(0) -> false
perfectp1(s1(x)) -> f4(x, s1(0), s1(x), s1(x))
f4(0, y, 0, u) -> true
f4(0, y, s1(z), u) -> false
f4(s1(x), 0, z, u) -> f4(x, u, -2(z, s1(x)), u)
f4(s1(x), s1(y), z, u) -> if3(<=2(x, y), f4(s1(x), -2(y, x), z, u), f4(x, u, z, u))
The set Q consists of the following terms:
-2(x0, 0)
-2(s1(x0), s1(x1))
<=2(0, x0)
<=2(s1(x0), 0)
<=2(s1(x0), s1(x1))
if3(true, x0, x1)
if3(false, x0, x1)
perfectp1(0)
perfectp1(s1(x0))
f4(0, x0, 0, x1)
f4(0, x0, s1(x1), x2)
f4(s1(x0), 0, x1, x2)
f4(s1(x0), s1(x1), x2, x3)
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
F4(s1(x), s1(y), z, u) -> F4(s1(x), -2(y, x), z, u)
F4(s1(x), s1(y), z, u) -> F4(x, u, z, u)
F4(s1(x), 0, z, u) -> F4(x, u, -2(z, s1(x)), u)
The TRS R consists of the following rules:
-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
<=2(0, y) -> true
<=2(s1(x), 0) -> false
<=2(s1(x), s1(y)) -> <=2(x, y)
if3(true, x, y) -> x
if3(false, x, y) -> y
perfectp1(0) -> false
perfectp1(s1(x)) -> f4(x, s1(0), s1(x), s1(x))
f4(0, y, 0, u) -> true
f4(0, y, s1(z), u) -> false
f4(s1(x), 0, z, u) -> f4(x, u, -2(z, s1(x)), u)
f4(s1(x), s1(y), z, u) -> if3(<=2(x, y), f4(s1(x), -2(y, x), z, u), f4(x, u, z, u))
The set Q consists of the following terms:
-2(x0, 0)
-2(s1(x0), s1(x1))
<=2(0, x0)
<=2(s1(x0), 0)
<=2(s1(x0), s1(x1))
if3(true, x0, x1)
if3(false, x0, x1)
perfectp1(0)
perfectp1(s1(x0))
f4(0, x0, 0, x1)
f4(0, x0, s1(x1), x2)
f4(s1(x0), 0, x1, x2)
f4(s1(x0), s1(x1), x2, x3)
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
F4(s1(x), s1(y), z, u) -> F4(x, u, z, u)
F4(s1(x), 0, z, u) -> F4(x, u, -2(z, s1(x)), u)
Used argument filtering: F4(x1, x2, x3, x4) = x1
s1(x1) = s1(x1)
-2(x1, x2) = x1
0 = 0
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
F4(s1(x), s1(y), z, u) -> F4(s1(x), -2(y, x), z, u)
The TRS R consists of the following rules:
-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
<=2(0, y) -> true
<=2(s1(x), 0) -> false
<=2(s1(x), s1(y)) -> <=2(x, y)
if3(true, x, y) -> x
if3(false, x, y) -> y
perfectp1(0) -> false
perfectp1(s1(x)) -> f4(x, s1(0), s1(x), s1(x))
f4(0, y, 0, u) -> true
f4(0, y, s1(z), u) -> false
f4(s1(x), 0, z, u) -> f4(x, u, -2(z, s1(x)), u)
f4(s1(x), s1(y), z, u) -> if3(<=2(x, y), f4(s1(x), -2(y, x), z, u), f4(x, u, z, u))
The set Q consists of the following terms:
-2(x0, 0)
-2(s1(x0), s1(x1))
<=2(0, x0)
<=2(s1(x0), 0)
<=2(s1(x0), s1(x1))
if3(true, x0, x1)
if3(false, x0, x1)
perfectp1(0)
perfectp1(s1(x0))
f4(0, x0, 0, x1)
f4(0, x0, s1(x1), x2)
f4(s1(x0), 0, x1, x2)
f4(s1(x0), s1(x1), x2, x3)
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
F4(s1(x), s1(y), z, u) -> F4(s1(x), -2(y, x), z, u)
Used argument filtering: F4(x1, x2, x3, x4) = x2
s1(x1) = s1(x1)
-2(x1, x2) = x1
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
<=2(0, y) -> true
<=2(s1(x), 0) -> false
<=2(s1(x), s1(y)) -> <=2(x, y)
if3(true, x, y) -> x
if3(false, x, y) -> y
perfectp1(0) -> false
perfectp1(s1(x)) -> f4(x, s1(0), s1(x), s1(x))
f4(0, y, 0, u) -> true
f4(0, y, s1(z), u) -> false
f4(s1(x), 0, z, u) -> f4(x, u, -2(z, s1(x)), u)
f4(s1(x), s1(y), z, u) -> if3(<=2(x, y), f4(s1(x), -2(y, x), z, u), f4(x, u, z, u))
The set Q consists of the following terms:
-2(x0, 0)
-2(s1(x0), s1(x1))
<=2(0, x0)
<=2(s1(x0), 0)
<=2(s1(x0), s1(x1))
if3(true, x0, x1)
if3(false, x0, x1)
perfectp1(0)
perfectp1(s1(x0))
f4(0, x0, 0, x1)
f4(0, x0, s1(x1), x2)
f4(s1(x0), 0, x1, x2)
f4(s1(x0), s1(x1), x2, x3)
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.